
Thank you

Dear Customer,

Thank you for your purchase and for your confidence in our products.

These are the result of many years of research in the field of design and production of heat pumps for swimming pools. Our aim is to provide you with an exceptional high performance quality product.

We have produced this manual with the utmost care so that you get maximum benefit from your Poolex heat pump.

PLEASE READ CAREFULLY.

These installation instructions are an integral part of the product.

They must be given to the installer and retained by the user.

If the manual is lost, please consult the website:

www.poolex.fr

The instructions and recommendations contained in this manual should be read carefully and understood since they provide valuable information concerning the heat pump's safe handling and operation. **Keep this manual in an accessible place for easy future reference.**

Installation must be carried out by a qualified professional person in accordance with current regulations and the manufacturer's instructions. An installation error may cause physical injury to persons or animals as well as mechanical damage for which the manufacturer can under no circumstances be held responsible.

After unpacking the heat pump, please check the contents in order to report any damage. Please also check that the pressure indicated on the gauge is higher than 80 psi. If not, this could mean a leak of refrigerant.

Prior to connecting the heat pump, ensure that the information provided in this manual is compatible with the actual installation conditions and does not exceed the maximum limits authorised for this particular product.

In the event of a defect and/or malfunction of the heat pump, the electricity supply must be disconnected and no attempt made to repair the fault.

Repairs must be undertaken only by an authorised technical service organisation using original replacement parts. Failure to comply with the above-mentioned clauses may have an adverse effect on the heat pump's safe operation.

To guarantee the heat pump's efficiency and satisfactory operation, it is important to ensure its regular maintenance in accordance with the instructions provided.

If the heat pump is sold or transferred, always make sure that all technical documentation is transmitted with the equipment to the new owner.

This heat pump is designed solely for heating a swimming pool. Any other use must be considered as being inappropriate, incorrect or even hazardous.

Any contractual or non-contractual liability of the manufacturer/distributor shall be deemed null and void for damage caused by installation or operational errors, or due to non-compliance with the instructions provided in this manual or with current installation norms applicable to the equipment covered by this document.

Contents

1. Ge	eneral	6
1.1	General Terms of Delivery	6
1.2	Safety instructions	6
1.3	Water treatment	7
	escription	
2.1	Package contents	
2.2	General characteristics	
2.3	Technical specifications	9
2.4	Unit dimensions	
2.5	Exploded view	11
3 Inc	stallation	12
3.1	Pre-requirements	
3.2	Location	
3.3	Installation layout	
3.4	Connecting the condensation draining kit	
3.5	Installing the unit on noise-damping supports	
	Hydraulic connection	
3.6	Electrical installation	
3.7		
3.8	Electrical connection	
3.9	Wall–mounting the remote control	18
4. Us	S e	19
4.1	Wired remote control	
4.2	Operating mode selector	
4.3	Heating Mode	
4.4	FIX Heating Mode	
4.5	ECO Heating Mode	
4.6	Cooling Mode	
4.7	Setting the clock	
4.8	Programming Start/Stop	
4.9	Activating a programme	
4.10		
4.11	Status values	
5. Op	peration	
5.1	Operation	28
5.2	Servo-control of circulating pump	28
5.3	Using the pressure gauge	29
5.4	Antifreeze protection	29
6. Ma	aintenance and servicing	30
6.1	Maintenance and servicing	
6.2	Winter storage	
	·	
7. Re	epairs	
7.1	Breakdowns and faults	32
7.2	List of faults	33
		• -
	ecycling	
8.1	Recycling the heat pump	34
9. Wa	arranty	35
9.1	General warranty conditions	
	Appendices	
10.1	Wiring diagrams	36

1. General

1.1 General Terms of Delivery

All equipment, even if shipped 'free of carriage and packing', is dispatched at the consignee's own risk

The person responsible for receiving the equipment must carry out a visual inspection to identify any damage to the heat pump during transport (refrigerant system, body panels, electrical control box, frame). He/she must note down on the carrier's delivery note any remarks concerning damage caused during transport and confirm them to the carrier by registered letter within 48 hours.

The equipment must always be stored and transported vertically on a pallet and in its original packaging. If

it is stored or transported horizontally, wait at least 24 hours before switching it on.

1.2 Safety instructions

WARNING: Please read carefully the safety instructions before using the equipment. The following instructions are essential for safety so please strictly comply with them.

During installation and servicing

Only a qualified person may undertake installation, start-up, servicing and repairs, in compliance with current standards.

Before operating or undertaking any work on the equipment (installation, commissioning, usage, servicing), the person responsible must be aware of all the instructions in the heat pump's installation manual as well as the technical specifications.

Under no circumstances install the equipment close to a source of heat, combustible materials or a building's air intake.

If installation is not in a location with restricted access, a heat pump protective grille must be fitted.

To avoid severe burns, do not walk on pipework during installation, repairs or maintenance.

To avoid severe burns, prior to any work on the refrigerant system, turn off the heat pump and wait several minutes before placing temperature and pressure sensors.

Check the refrigerant level when servicing the heat pump.

Check that the high and low pressure switches are correctly connected to the refrigerant system and that they turn off the electrical circuit if tripped during the equipment's annual leakage inspection.

Check that there is no trace of corrosion or oil stains around the refrigerant components.

1. General

During use

To avoid serious injuries, never touch the fan when it is operating.

Keep the heat pump out of the reach of children to avoid serious injuries caused by the heat exchanger's blades.

Never start the equipment if there is no water in the pool or if the circulating pump is stopped.

Check the water flow rate every month and clean the filter if necessary.

During cleaning

Switch off the equipment's electricity supply.

Close the water inlet and outlet valves.

Do not insert anything into the air or water intakes or outlets.

Do not rinse the equipment with water.

During repairs

Carry out work on the refrigerant system in accordance with current safety regulations.

Brazing should be performed by a qualified welder.

When replacing a defective refrigerant component, use only parts certified by our technical department.

When replacing pipework, only copper pipes conforming to Standard NF EN12735-1 may be used for repairs.

When pressure-testing to detect leaks:

To avoid the risks of fire or explosion, never use oxygen or dry air.

Use dehydrated nitrogen or a mixture of nitrogen and refrigerant.

The low and high side test pressure must not exceed 42 bar.

1.3 Water treatment

Poolex heat pumps for swimming pools can be used with all types of water treatment systems. Nevertheless, it is essential that the treatment system (chlorine, pH, bromine and/or salt chlorinator metering pumps) is installed after the heat pump in the hydraulic circuit.

To avoid any deterioration to the heat pump, the water's pH must be maintained between 6.9 and 8.0.

2.1 Package contents

- Heat pump Poolex Jetline Selection Inverter
- ✓ 2 hydraulic inlet/outlet connectors (50mm diameter)
- ✓ Extension cable for remote control panel
- ✓ This installation and user manual
- Condensation draining kit
- ✓ Winter storage cover
- 4 anti-vibration pads (fastenings not supplied)

2.2 General characteristics

A Poolex heat pump has the following features:

- CE certification and complies with the RoHS European directive.
- High performance with up to 80% energy savings compared to a conventional heating system.
- Clean, efficient and environmentally friendly R410A refrigerant.
- Reliable high output leading brand compressor.
- Wide hydrophilic aluminium evaporator for use at low temperatures.
- User-friendly intuitive remote control.
- Heavy duty ABS shell, anti-UV treated and easy to maintain.
- Designed to be silent.
- Dual antifreeze system to avoid frost damage:

Revolutionary exchanger with patented antifreeze system.

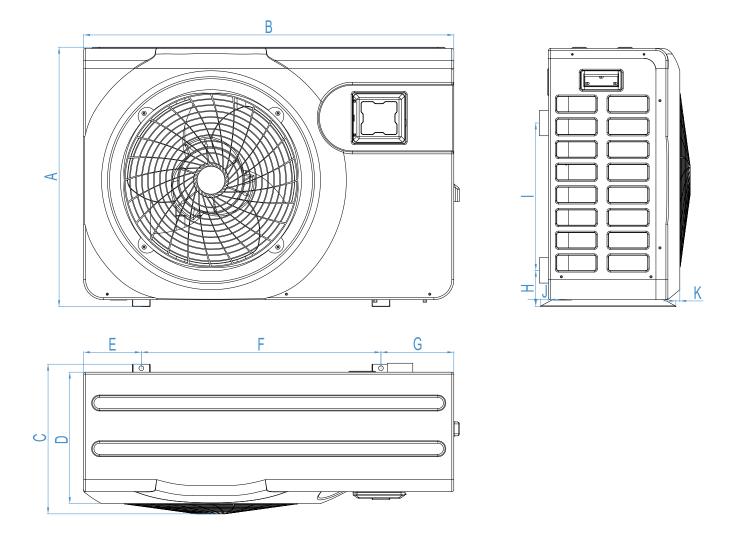
A smart monitoring system to preserve the pipework and liner without emptying the pool in winter.

2.3 Technical specifications

Test conditions		Poolex Jetline Selection Inverter				
		120	150	200	280	
	Heating power (kW)	12.0~5.1	15,0~6.5	20,1~8.3	27.5~11.8	
Air (1) 26°C	Power input (kW)	2.05~0.53	2.56~0.68	3.44~0,87	4.50~1.28	
Water (2) 26°C INVERTER MODE	Current (A)	8.92~2.31	11.13~2.96	14.95~3.78	19.57~5.56	
	COP (Coeff. of performance)	7.01	7,02	7,01	7,02	
	Heating power (kW)	8.8~3.7	12.0~4.9	13.8~6.1	19.8~8.1	
Air (1) 15°C	Power input (kW)	2.03~0.62	2.57~0.82	3.18~1.02	4.50~1.35	
Water (2) 26°C INVERTER MODE	Current (A)	8.83~2.70	11.18~3.56	13.83~4.34	19.57~5.86	
	COP (Coeff. of performance)	5,22	5,07	5.06	5,07	
	Cooling capacity (kW)	4.6~3.6	6.3~4.8	7.6~5.7	10,2~7,7	
Air (1) 35°C	Power input (kW)	1.27~0.69	1.75~0.92	2.11~1.09	2.83~1.48	
Water (2) 27°C	Current (A)	5.53~3.05	7.61~4.1	9.18~4.74	12.31~6.43	
	Avg. EER (Energy Efficiency Ratio)	3.3	3.3	3.3	3.3	
Maximum pov	ver (W)	3204	4004	5005	6010	
Maximum cur	rent (A)	14.4	18.0	22.5	27.0	
Electricity supply		220~240V / 50Hz				
Heating temperature range		15°C~40°C				
Cooling temperature range		8°C~28°C				
Operating temperature range		-7°C~43°C				
Unit dimensions L x W x H (mm)		945 x 380 x 652 1130 x 410 x 710				
Unit weight (k	g)	52	52	61	69	
Sound pressu	re level at 1 m (dBA) (3)	<48	<49	<49	<49	
Sound pressure level at 10 m (dBA) (3)		<28	<28	<29	<29	
Hydraulic con	nection (mm)	PVC 50mm				
Heat exchanger		PVC tank and titanium heating coil				
water flow rate (m³/h)		3.2	3.2	5.1	7.0	
Compressor		Mitsubishi	Mitsubishi	Mitsubishi	Mitsubishi	
Compressor t	уре	Twin Rotary	Twin Rotary	Twin Rotary	Twin Rotary	
Refrigerant		R410A				
Refrigerant content (kg)		0.90 (5)	1.05 (5)	1.20 (5)	1.60 (5)	
CO2 equivalent		1.88t ⁽⁵⁾	1.88t ⁽⁵⁾	2.51t ⁽⁵⁾	3.34t (5)	
Load loss (mCE)		1,1	1,1	1,2	1,3	
Max. pool volume (m³) (4)		35 - 50m³	50 - 65m³	60 - 75m³	80 - 110m³	
Remote control		Wired backlit LCD monitor screen				
Mode		Heating / Cooling				

The technical specifications of our heat pumps are provided for information purposes only. We reserve the right to make changes without prior notice.

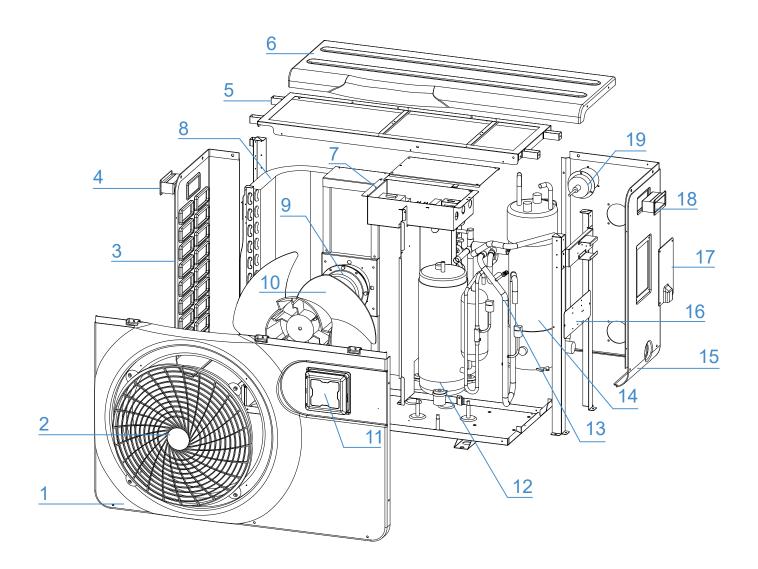
¹Ambient air temperature


² Initial water temperature

³ Noise at 1 m, at 4 m and at 10 m in accordance with Directives EN ISO 3741 and EN ISO 354

⁴ Calculated for an in-ground private swimming pool covered with a bubble cover.

⁵ Value indicated on the unit's nameplate.


2.4 Unit dimensions

Dimensions in mm

Model	Jetline Selection Inverter 90 / 120 / 150	Jetline Selection Inverter 200
Α	650	702.5
В	950	1053
С	350	395
D	317	370
Е	154	182.5
F	610	620
G	154	217.5
Н	91	101
- 1	330	380
J	22	20
K	12	5

2.5 Exploded view

- 1. Front panel
- 2. Fan protective grille
- 3. Left side panel
- 4. Left hand grip
- 5. Assembly frame/Chassis
- 6. Top panel
- 7. Electrical control box
- 8. Evaporator
- 9. Fan motor
- 10. Fan blade

- 11. Sealed enclosure for remote control
- 12. Compressor
- 13. 4-way valve
- 14. Heat exchanger
- 15. Right side panel
- 16. Electrical terminal block
- 17. Electrical box cover
- 18. Right hand grip
- 19. Pressure gauge

WARNING: Installation must be carried out by a qualified engineer.

This section is provided for information purposes only and must be checked and adapted if necessary according to the actual installation conditions.

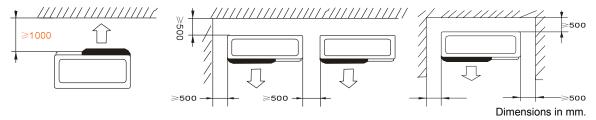
3.1 Pre-requirements

Equipment necessary for the installation of your heat pump:

Power supply cable suitable for the unit's power requirements.

A *By-Pass* kit and an assembly of PVC tubing suitable for your installation as well as stripper, PVC adhesive and sandpaper.

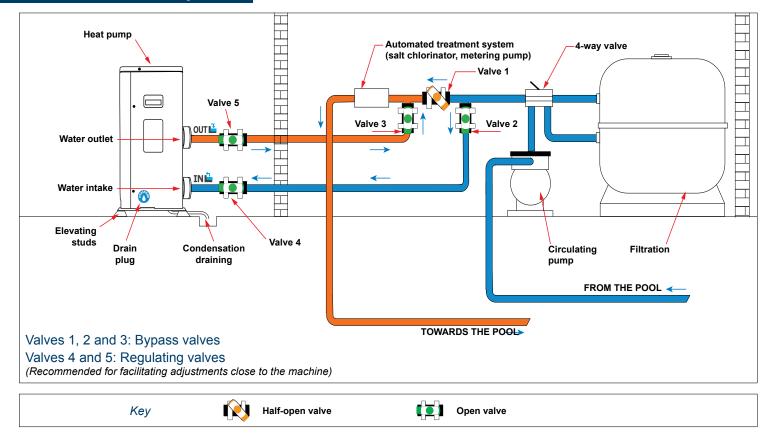
A set of wall plugs and expansion screws suitable to attach the unit to your support.


We recommend that you connect the unit to your installation by means of flexible PVC pipes in order to reduce the transmission of vibrations.

Suitable fastening studs may be used to raise the unit.

3.2 Location

Please comply with the following rules concerning the choice of heat pump location.


- The unit's future location must be easily accessible for convenient operation and maintenance.
- 2. It must be installed on the ground, fixed ideally on a level concrete floor. Ensure that the floor is sufficiently stable and can support the weight of the unit.
- 3. A water drainage device must be provided close to the unit in order to protect the area where it is installed.
- 4. If necessary, the unit may be raised by using suitable mounting pads designed to support its weight.
- Check that the unit is properly ventilated, that the air outlet is not facing the windows of neighbouring buildings and that the exhaust air cannot return. In addition, provide sufficient space around the unit for servicing and maintenance operations.
- 6. The unit must not be installed in an area exposed to oil, flammable gases, corrosive products, sulphurous compounds or close to high frequency equipment.
- 7. To prevent mud splashes, do not install the unit near a road or track.
- 8. To avoid causing nuisance to neighbours, make sure the unit is installed so that it is positioned towards the area that is least sensitive to noise.
- 9. Keep the unit as much as possible out of the reach of children.

Place nothing less than one metre in front of the heat pump. Leave 50 cm of empty space around the sides and rear of the heat pump.

Do not leave any obstacle above or in front of the unit!

3.3 Installation layout

3.4 Connecting the condensation draining kit

While operating, the heat pump is subject to condensation. This will result in a more or less large run-off of water, depending on the degree of humidity. To channel this flow, we recommend that you install the condensation drainage kit.

How do you install the condensation drainage kit|?

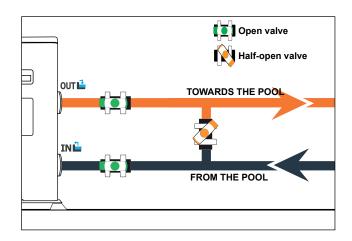
Install the heat pump, raising it at least 10 cm with solid water-resistant pads, then connect the drainage pipe to the opening located under the pump.

3.5 Installing the unit on noise-damping supports

In order to minimise the noise pollution associated with heat pump vibrations, it can be positioned on vibration absorbing pads.

To do this, you simply have to position a pad between each of the unit's feet and its support, and then fix the heat pump to the support with suitable screws.

WARNING: Installation must be carried out by a qualified engineer.

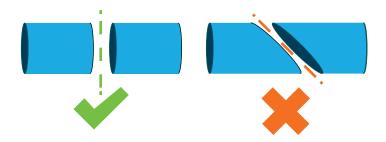

This section is provided for information purposes only and must be checked and adapted if necessary according to the actual installation conditions.

3.6 Hydraulic connection

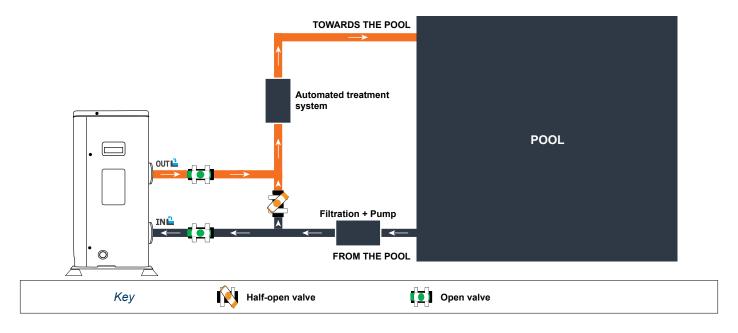
By-Pass assembly

The heat pump must be connected to the pool by means of a By-Pass assembly.

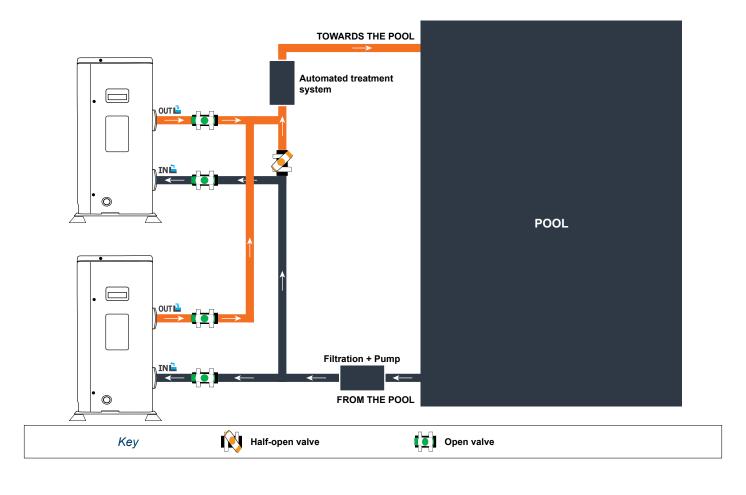
A By-Pass is an assembly consisting of 3 valves that regulate the flow circulating in the heat pump. During maintenance operations, the By-Pass permits the heat pump to be isolated from the system without interrupting your installation.



Making a hydraulic connection with the By-Pass kit


WARNING: Do not run water through the hydraulic circuit for 2 hours after applying the adhesive.

- Step 1: Take the necessary steps to cut your pipes.
- Step 2: Make a straight perpendicular cut through the PVC pipes with a saw.



- Step 3: Assemble your hydraulic circuit without connecting it in order to check that it perfectly fits your installation, then dismantle the pipes to be connected.
- Step 4: Chamfer the ends of the cut pipes with sandpaper.
- Step 5: Apply stripper to the ends of the pipes to be connected.
- Step 6: Apply the adhesive in the same place.
- Step 7: Assemble the pipes.
- Step 7: Clean off any adhesive remaining on the PVC.
- Step 8: Leave to dry for at least 2 hours before putting the hydraulic circuit into water.

By-Pass assembly for one heat pump

By-Pass assembly for more than one heat pump

The filter located upstream of the heat pump must be regularly cleared so that the water in the system is clean, thus avoiding the operational problems associated with dirt or clogging in the filter.

WARNING: Installation must be carried out by a qualified engineer.

This section is provided for information purposes only and must be checked and adapted if necessary according to the actual installation conditions.

3.7 Electrical installation

To function safely and maintain the integrity of your electrical system, the unit must be connected to a general electricity supply in accordance with the following regulations:

Upstream, the general electricity supply must be protected by a 30 mA differential switch.

The heat pump must be connected to a suitable D-curve circuit breaker (see table below) in accordance with current standards and regulations in the country where the system is installed.

The electricity supply cable must be adapted to match the unit's rated power and the length of wiring required by the installation (see table below). The cable must be suitable for outdoor use.

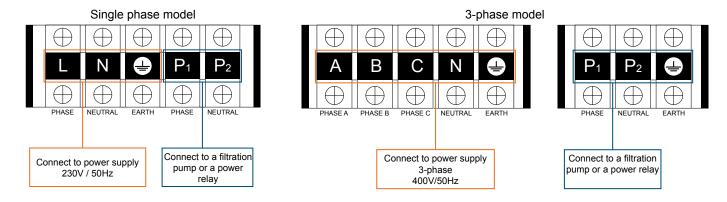
For a three-phase system, it is essential to connect the phases in the correct sequence. If the phases are inverted, the heat pump's compressor will not work.

In places open to the public, it is mandatory to install an emergency stop button close to the heat pump.

Models	Electricity supply	Max. current	Cable diameter	Protection Thermal-magnetic (D curve) protection
Jetline Selection Inverter 120	1-phase 220-240V/1N~50Hz	14.4 A	RO2V 3x2,5 mm²	16 A
Jetline Selection Inverter 150		18 A	RO2V 3x4 mm²	20 A
Jetline Selection Inverter 200		22.5 A	RO2V 3x4 mm²	25 A
Jetline Selection Inverter 280		27 A	RO2V 3x6 mm²	32 A

¹ Cable cross-section suitable for max. length 10 metres. For longer than 10 metres, consult an electrician.

3.8 Electrical connection


WARNING: The heat pump's power supply MUST be disconnected before any operation.

Please comply with the following instructions to electrically connect the heat pump.

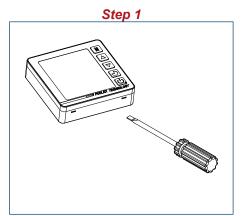
Step 1: Detach the electrical side panel with a screwdriver to access the electrical terminal block.

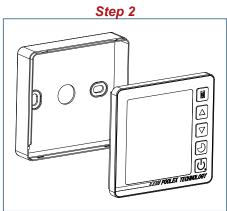
Step 2: Insert the cable into the heat pump unit by passing it through the opening provided for that purpose.

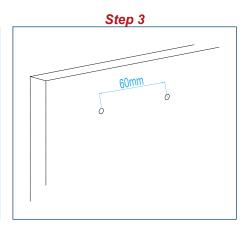
Step 3: Connect the power supply cable to the terminal block in accordance with the diagram below.

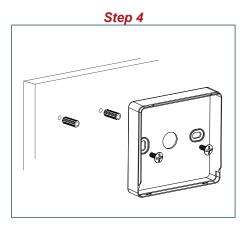
Step 4: Carefully close the heat pump panel.

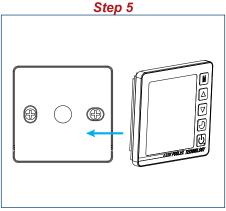
Servo-control of circulating pump

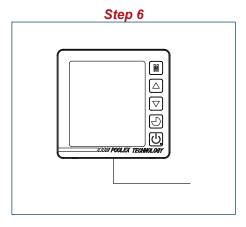

Depending on the type of installation, you can also connect a circulating pump to terminals P₁ and P₂ so that this operates in tandem with the heat pump.

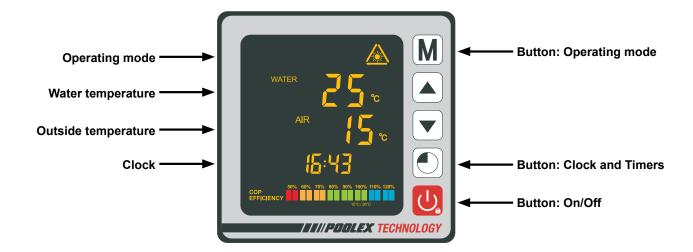



WARNING: Servo-control of a pump whose power exceeds 5A (1000W) requires the use of a power relay.


3.9 Wall-mounting the remote control


- **Step 1:** Detach the remote control from the machine. Pay attention to the communication wire connected to the printed circuit board and separate them carefully.
- **Step 2:** Use a screwdriver to open the casing and separate the remote control.
- **Step 3:** Drill two parallel holes at eye level: 60 mm centre-to-centre.
- **Step 4:** Attach the remote control's rear cover to the wall.
- Step 5: Align the front and rear covers exactly, ensuring that the box is fixed firmly to the wall.
- Step 6: Carefully connect the communication wire.





WARNING: Do not use sharp objects to touch the remote control's front face and buttons as you may damage it. When the remote control is fixed to the wall, do not pull the communication wire, this may cause a loose contact.

4.1 Wired remote control

4.2 Operating mode selector

Before starting, ensure that the filtration pump is working and that water is circulating through the heat pump.

Prior to setting your required temperature, you must first select an operating mode for your heat pump:

Heating Mode

Select the heating mode for the heat pump to heat the water in your pool.

FIX Heating Mode

Select the fix heating mode for the heat pump to heat the water in your pool.

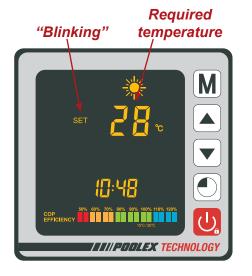
ECO Silence Heating Mode

Select the silence heating mode for the heat pump to heat the water in your pool.

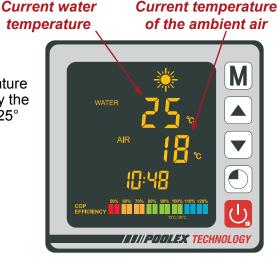
Cooling Mode

Select the cooling mode for the heat pump to cool the water in your pool.

4.3 Heating Mode



WARNING: Before starting, ensure that the filtration pump is operating correctly.


- **Step 1:** Long press 3s to switch on your pump.
- **Step 2:** Long press M 3s to switch from one mode to another until the Heating Mode is displayed.
- **Step 3:** Using buttons ▼ and ▲ select the required temperature (15-40°C).

EXAMPLE:

If you have selected 28°C, your screen will display:

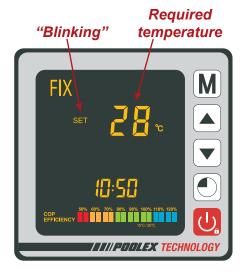
Once the symbol stops blinking, the required temperature is validated and is replaced by the water's current temperature (25° in our example).

Useful information

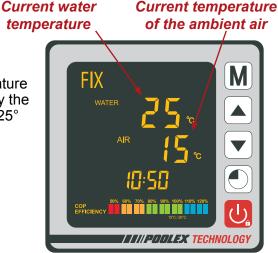
WARNING: When the cooling mode switches to heating mode or vice-versa, the heat pump will restart after 10 minutes.

When the incoming water temperature is less than or equal to the required temperature (setpoint temperature - 1°C), the heat pump will switch to heating mode. The compressor will stop when the temperature of the incoming water is greater than or equal to the required temperature (setpoint temperature + 1°C).

4.4 FIX Heating Mode



WARNING: Before starting, ensure that the filtration pump is operating correctly.


- **Step 1:** Long press 3s to switch on your pump.
- **Step 2:** Long press M 3s to switch from one mode to another until the FIX Heating Mode is displayed.
- **Step 3:** Using buttons and select the required temperature (15-40°C).

EXAMPLE:

If you have selected 28°C, your screen will display:

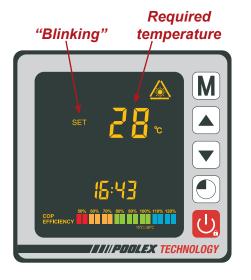
Once the symbol stops blinking, the required temperature is validated and is replaced by the water's current temperature (25° in our example).

Useful information

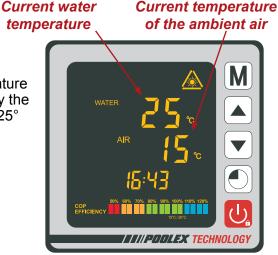
WARNING: When the cooling mode switches to heating mode or vice-versa, the heat pump will restart after 10 minutes.

When the incoming water temperature is less than or equal to the required temperature (setpoint temperature - 1°C), the heat pump will switch to heating mode. The compressor will stop when the temperature of the incoming water is greater than or equal to the required temperature (setpoint temperature + 1°C).

4.5 ECO Heating Mode



WARNING: Before starting, ensure that the filtration pump is operating correctly.


- Step 1: Long press U 3s to switch on your pump.
- Step 2: Long press M 3s to switch from one mode to another until ECO Heating Mode is displayed.
- **Step 3:** Select the desired temperature by using the buttons ▼ and ▲ (15-40°C).

EXAMPLE:

If you have selected 28°C, your screen will display:

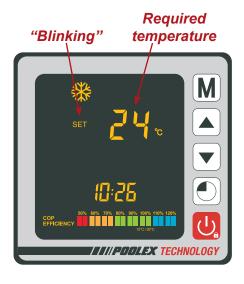
Once the symbol stops blinking, the required temperature is validated and is replaced by the water's current temperature (25° in our example).

Useful information

WARNING: When the cooling mode switches to heating mode or vice-versa, the heat pump will restart after 10 minutes.

When the incoming water temperature is less than or equal to the required temperature (setpoint temperature - 1°C), the heat pump will switch to heating mode. The compressor will stop when the temperature of the incoming water is greater than or equal to the required temperature (setpoint temperature + 1°C).

4.6 Cooling Mode



WARNING: Before starting, ensure that the filtration pump is operating correctly.

- Step 1: Long press U 3s to switch on your pump.
- **Step 2:** Long press M 3s to switch from one mode to another until the Cooling Mode is displayed.
- **Step 3:** Using buttons **▼** and **▲** select the required temperature (8-28°C).

EXAMPLE:

If you have selected 24°C, for example, your screen will display:

Once the symbol stops blinking, the required temperature is validated and is replaced by the water's current temperature (27° in our example).

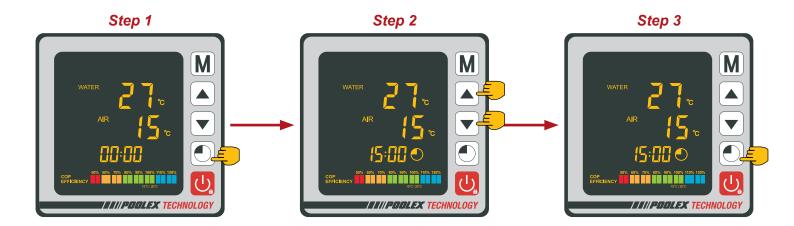
ture the AIR AIR COPERFICIENCY COPERFICIENCY

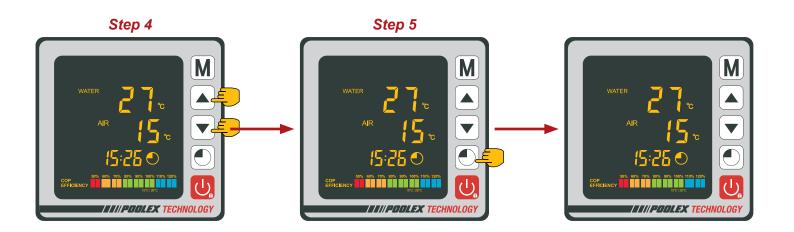
Current temperature

TATII POOLEX TECHNOLOGY

Current water

Useful information


WARNING: When the cooling mode switches to heating mode or vice-versa, the heat pump will restart after 10 minutes.


When the incoming water temperature is higher or equal to the required temperature (setpoint temperature + 1°C), the heat pump will switch to cooling mode. The compressor will stop when the temperature of the incoming water is less than or equal to the required temperature (setpoint temperature - 1°C).

4.7 Setting the clock

Set the system clock to local time, as follows:

- **Step 1:** Press to set the time, the hours are blinking.
- **Step 2:** Adjust the hours with the buttons ▼ and ▲.
- Step 3: Press to switch to minutes.
- **Step 4:** Adjust the minutes with the buttons **▼** and **▲**.
- **Step 5:** Press to validate and return to the main screen.

4.8 Programming Start/Stop

This function is for programming the Start/Stop timing. You can programme up to 3 different Start/Stop timings. Setting is as follows:

Step 1: Long press 3s to enter into timer functions

Step 2: Select the programme to be configured with the buttons ▼ and ▲.

Step 3: Press to programme the start time.

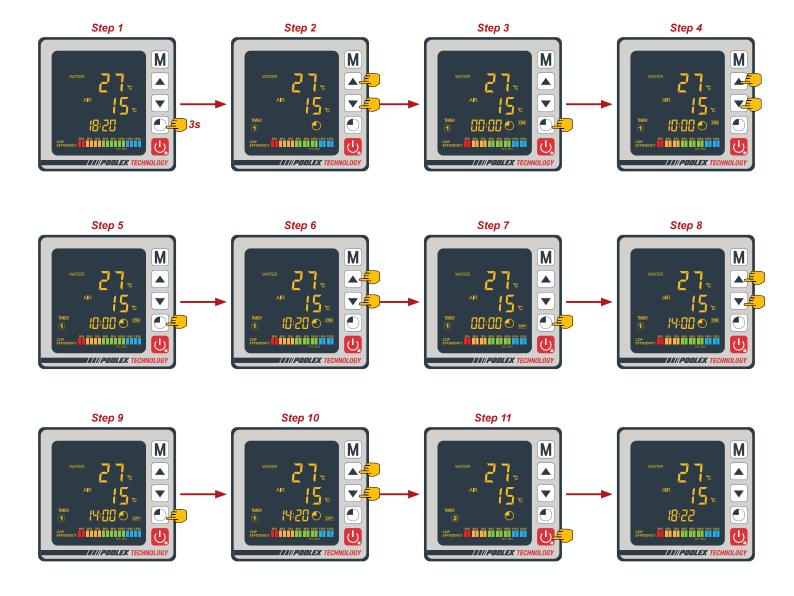
Step 4: Adjust the hours with the buttons (▼) and (▲).

Step 5: Press to switch to minutes.

Step 6: Adjust the minutes with the buttons (▼) and (▲).

Step 7: Press to programme the stop time.

Step 8: Adjust the hours with the buttons ▼ and ▲.

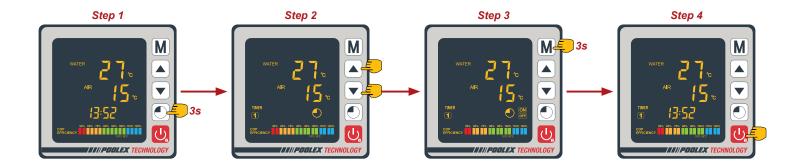

Step 9: Press to switch to minutes.

Step 10: Adjust the minutes with the buttons ▼ and ▲.

Step 11: Press to return to the main screen.

Refer to the following section to activate the programme

NB: The remote control returns automatically to the main screen after 10 seconds.

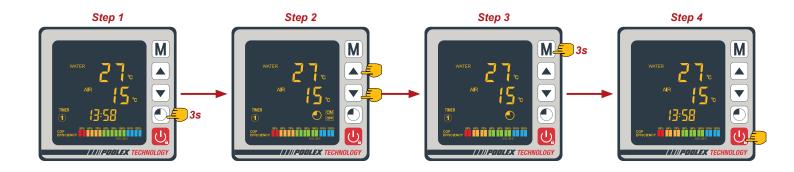


4.9 Activating a programme

Once the programme has been defined, it can be activated as follows:

- Step 1: Long press 3s to enter into timer functions
- **Step 2:** Select the programme to be activated with the buttons $\boxed{\bullet}$ and $\boxed{\blacktriangle}$.
- Step 3: Keep pressing M until the ON/OFF indicator lights are displayed and start flashing.
- Step 4: Press U to return to the main screen.

The ON/OFF lights indicate an active programme; the numeral above the line indicates the number of the active programme.

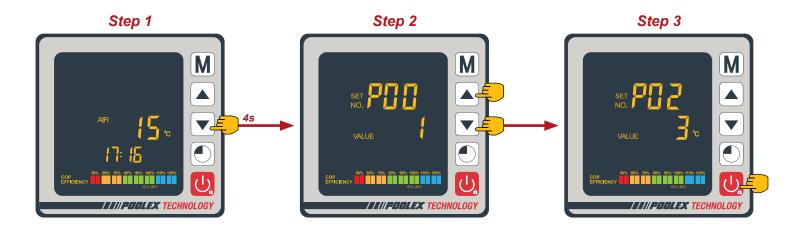


4.10 Deactivating a programme

Once the programme has been activated, it can be deactivated as follows:

- Step 1: Long press 3s to enter into timer functions
- **Step 2:** Select the programme to be deactivated with the buttons ▼ and ▲.
- Step 2: Keep pressing M until the ON/OFF indicator lights disappear
- Step 3: Press Ut to return to the main screen

The ON/OFF lights indicate an active programme; the numeral above the line indicates the number of the active programme.


4.11 Status values

The status values can be checked via the remote control by following these steps

Step 1: Keep pressing ▼ until you enter the settings verification mode.

Step 2: Press ▼ and ▲ to check the status values.

Step 3: Press U to return to the main screen.

Status values table

N°	Description	Range
01	Water inlet temperature	-20~99°C
02	Water outlet temperature	-20~99°C
03	Ambient temperature	-20~99°C
04	Air outlet temperature	0~125°C
05	Air inlet temperature	-20~99°C
06	Outside coid temperature	-20~99°C
07	Inside coil temperature	-20~99°C
08	The openness of the expansion valve	
09	Reserved	
10	Compressor current	
11	Temperature of the heat sink	
12	DC bus voltage	
13	Compressor real speed	

5. Operation

5.1 Operation

Conditions of use

For the heat pump to operate normally, the ambient air temperature must be between -5°C and 43°C.

Recommendations prior to start-up

Before activating the heat pump, please:

- Check that the unit is firmly secured and stable.
- Check that the gauge indicates a pressure greater than 80 psi.
- Check that the electrical wiring is properly connected to the terminals.
- Check the earthing.
- Check that the hydraulic connections are tight and that there is no leakage of water.
- Check that the water is circulating correctly in the heat pump and that the flow rate is adequate.
- Remove any unnecessary object or tool from around the unit.

Operation

- 1. Activate the unit's power supply protection (differential switch and circuit-breaker).
- 2. Activate the circulating pump if it is not servo-controlled.
- 3. Check the By-Pass opening and the control valves.
- 4. Activate the heat pump by pressing once on U
- 5. Adjust the remote control clock.
- 6. Select the required temperature by using one of the remote control's mode.
- 7. The heat pump's compressor will start up after a few moments.

All you have to do now is wait until the required temperature is reached.

WARNING: Under normal conditions, a suitable heat pump can heat the water in a swimming pool by 1°C to 2°C per day. It is therefore quite normal to not feel any temperature difference in the system when the heat pump is working.

A heated pool must be covered to avoid any loss of heat.

5.2 Servo-control of circulating pump

If you have connected a circulating pump to terminals P1 and P2, it is automatically electrically powered when the heat pump operates.

5. Operation

5.3 Using the pressure gauge

The gauge is for monitoring the pressure of the refrigerant contained in the heat pump.

The values it indicates can vary considerably, depending on the climate, temperature and atmospheric pressure.

When the heat pump is in operation:

The gauge's needle indicates the refrigerant pressure.

Mean operating range between 250 and 400 PSI, depending on the ambient temperature and atmospheric pressure.

When the heat pump is shut down:

The needle indicates the same value as the ambient temperature (within a few degrees) and the corresponding atmospheric pressure (between 150 and 350 PSI maximum).

If left unused for a long period of time:

Check the pressure gauge before starting up the heat pump. It must indicate at least 80 PSI.

If the pressure goes down too much, the heat pump will display an error message and automatically go into 'safe' mode.

This means that there has been a leakage of refrigerant and that you must call a qualified technician to replace it.

5.4 Antifreeze protection

WARNING: For the antifreeze system to work, the heat pump must be powered and the circulating pump activated. If the circulating pump is servo-controlled by the heat pump, it will be automatically activated.

When the heat pump is on standby, the system monitors the ambient temperature and the water temperature in order to activate the antifreeze programme if required.

The antifreeze programme is automatically activated when the ambient temperature or the temperature of the water is less than 2°C and when the heat pump has been shut down for more than 120 minutes.

When the antifreeze programme is running, the heat pump activates its compressor and the circulating pump so as to reheat the water until the water temperature exceeds 2°C.

The heat pump automatically leaves the antifreeze mode when the ambient temperature is greater than or equal to 2°C or when the heat pump is activated by the user.

6. Maintenance and servicing

6.1 Maintenance and servicing

WARNING: Before undertaking maintenance work on the unit, ensure that you have disconnected the electrical power supply.

Cleaning

The heat pump's casing must be cleaned with a damp cloth. The use of detergents or other household products could damage the surface of the casing and affect its properties.

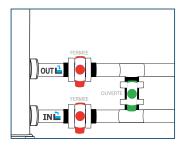
The evaporator at the rear of the heat pump must be carefully cleaned with a vacuum cleaner and soft brush attachment.

Annual maintenance

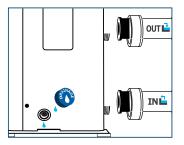
The following operations must be undertaken by a qualified person at least once a year.

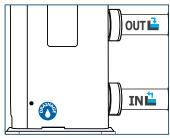
- Carry out safety checks.
- Check the integrity of the electrical wiring.
- Check the earthing connections.
- Monitor the state of the pressure gauge and the presence of refrigerant.

6. Maintenance and servicing


6.2 Winter storage

In the winter months when the ambient temperature is lower than 3°C, a shut-down heat pump must be winterised to avoid any frost damage.


Winterising in 4 steps


Step 1Disconnect the heat pump from the power supply.

Step 2Open the By-Pass valve.
Close the inlet and outlet valves.

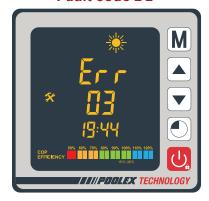
Step 3
Unscrew the drain plug
and water pipes in order to
drain any water from the
heat pump.

Step 4
Screw back the drain plug and pipes or block them with rags so as to prevent any foreign bodies from getting into the circuit. Finally, protect the pump with its winter storage cover.

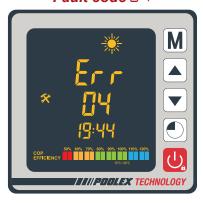
If a circulating pump is servo-controlled by the heat pump, drain this also.

7. Repairs

WARNING: Under normal conditions, a suitable heat pump can heat the water in a swimming pool by 1°C to 2°C per day. It is therefore quite normal to not feel any temperature difference in the system when the heat pump is working.

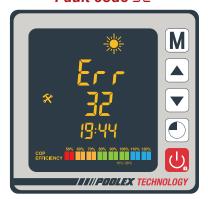

A heated pool must be covered to avoid any loss of heat.

7.1 Breakdowns and faults


In the event of a problem, the heat pump's screen displays a fault symbol X instead of temperature indications. Please consult the table opposite to find the possible causes of a fault and the actions to be taken.

Fault code examples:

Fault code □∃


Fault code ☐ 4

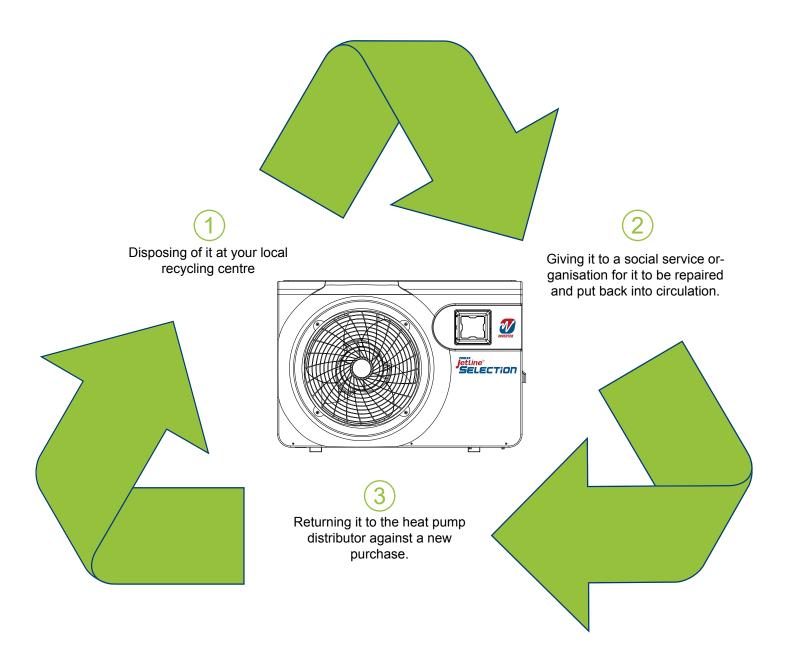
Fault code 2 ↓

Fault code ∃2

7. Repairs

7.2 List of faults

Code	Fault	Possible causes	Action	
03	Flow sensor malfunction	Insufficient water in heat exchanger	Check your water circuit operation and the opening of the By-Pass valves	
22		Sensor disconnected or defective	Reconnect or replace sensor	
04	Antifreeze protection	Protection activated when the ambient temperature is too low and the unit is on standby	No intervention is necessary	
		Insufficient water flow	Check water pump operation and openings of By-Pass inlet/outlet valves	
05	High pressure protection	Excess refrigerant gas	Readjust the refrigerant volume	
כט	High pressure protection	Defective 4-way valve	Replace the 4-way valve	
		High pressure switch disconnected or defective	Reconnect or replace high pressure switch	
		Insufficient refrigerant gas	Readjust the refrigerant volume	
ОЬ	Low pressure protection	Defective 4-way valve	Replace valve	
		Low pressure switch disconnected or defective	Reconnect or replace low pressure switch	
		Bad connection	Check wiring connections between remote control and PCB	
09	Connection problem between PCB and wired remote control	Defective wired remote control	Replace remote control	
		Defective PCB	Replace PCB	
		Bad connection	Check wiring connections between PCB and inverter module	
10	Connection problem between PCB and inverter module	Defective inverter module	Replace inverter module	
		Defective PCB	Replace PCB	
12	Vented air temperature too high	Insufficient refrigerant gas	Readjust the refrigerant volume	
15	Water intake temperature sensor malfunction	Sensor disconnected or defective	Reconnect or replace sensor	
16	Outside coil temperature error	Sensor disconnected or defective	Reconnect or replace sensor	
18	Vented temperature error	Sensor disconnected or defective	Reconnect or replace sensor	
	Inverter module protection	Defective inverter module	Power off the heat pump and restart	
20		Social Company	Replace inverter module	
		Compressor is defective	Replace the compressor	
21	Ambient temperature error	Sensor disconnected or defective	Reconnect or replace sensor	
23	Water temperature at outlet too low for cooling mode	Insufficient water flow	Check water pump operation and openings of By-Pass inlet/outlet valves	
27	Water outlet error	Sensor disconnected or defective	Reconnect or replace sensor	
29	Backed temperature error	Sensor disconnected or defective	Reconnect or replace sensor	
32	Outlet temperature too high for heating mode protection	Insufficient water flow	Check water pump operation and openings of By-Pass inlet/outlet valves	
	Compressor current protection	The speed of compressor is too high	Compressor will be lower the speed auto	
35		Water temperature is too high	Check water pump operation and openings of By-Pass inlet/outlet valves	
		Ambient temperature is too high, air volume is too little	Check the fan is working properly and the air inlet is unobstructed	
42	Inside coil temperature error	Sensor disconnected or defective	Reconnect or replace sensor	


8. Recycling

8.1 Recycling the heat pump

Your heat pump has reached the end of its life and you wish to dispose of it or to replace it. Do not throw it in the rubbish bin.

A heat pump must be disposed of separately with a view to its reuse, recycling or upgrading. It contains substances that are potentially hazardous to the environment but which will be eliminated or neutralised by recycling.

YOU HAVE THREE SOLUTIONS:

9. Warranty

9.1 General warranty conditions

The Poolstar Company guarantees the original owner against defective materials and faults in the manufacture of the Poolex Jetline Selection Inverter heat pump for a period of two (2) years.

The compressor is guaranteed for a period of five (5) years.

The titanium tube heat exchanger has a lifetime guarantee against chemical corrosion, except for frost damage.

The condenser's other components are guaranteed for two (2) years.

The warranty becomes effective on the date of the first invoice.

The warranty does not apply in the following cases:

- Malfunction or damage arising from an installation, usage or repair that is not in compliance with the safety instructions.
- Malfunction or damage arising from a chemical agent that is unsuitable for the pool.
- Malfunction or damage arising from conditions that are unsuitable for the equipment's purposes of use.
- Damage arising from negligence, accident or force majeure.
- Malfunction or damage arising from the use of unauthorised accessories.

Repairs undertaken during the warranty period must be approved prior to being carried out by an authorised technician. The warranty shall be null and void if the repair to the equipment is carried out by a person who is not authorised by the Poolstar company.

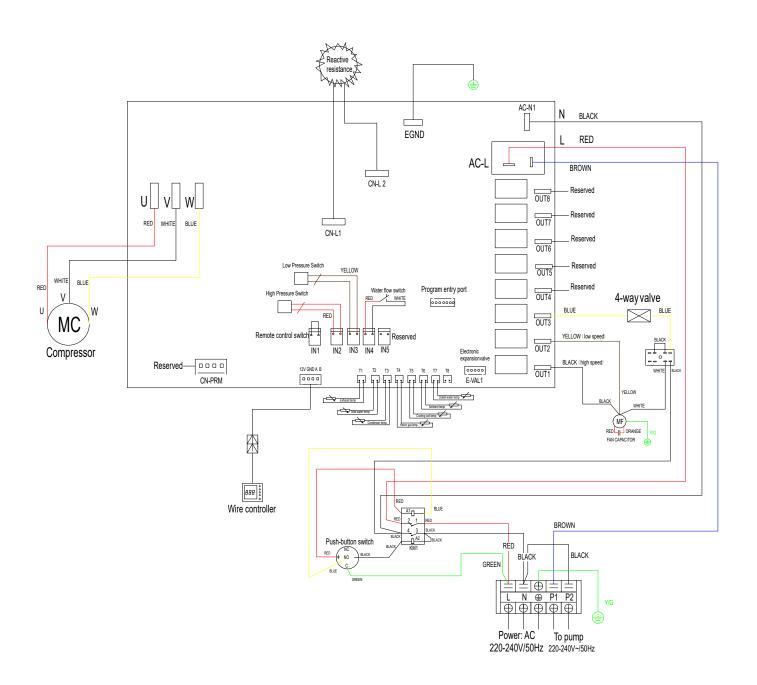
The guaranteed parts shall be replaced or repaired at Poolstar's discretion. Defective parts must be returned to our workshops to be covered during the warranty period. The warranty does not cover labour costs or unauthorised replacements. The return of the defective part is not covered by the warranty.

Dear Sir/Madam.

Please spend a few minutes filling in the warranty registration card that you will find on our website:

http://support.poolex.fr/

We thank you for your trust in our products. Enjoy your swimming!


Your details may be treated in accordance with the Data Protection Act of 6 January 1978 and will not be divulged to any third party.

WARNING:

The contractual warranty cannot be validated with the installer or Poolstar unless your product has been registered on our website.

10. Appendices

10.1 Wiring diagrams

Poolex Jetline Selection Inverter 120 / 150 / 200

10. Appendices

Poolex Jetline Selection Inverter 280

TECHNICAL SUPPORT

www.poolex.fr

0 826 102 852 Service 0,15 € / min + prix appel

